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Abstract. Electron transmission through an electrified composite metal-doped polymer–metal
system is investigated by means of the Lippmann–Schwinger equation. The electric field, applied
via the metal leads, acts across the polymer chain containing the single-impurity atom, which
behaves as a molecular switch. The Stark-ladder effect in the doped polymer is described by
utilizing the recursive-Green-function (RGF) approach, where repeated use of the Dyson equation
gives rise to a continued-fraction form of the RGF, which can be expressed analytically as a ratio
of Bessel functions. Molecular switch control of the transmission is achieved by adjusting the
parameters characterizing the impurity. The influence of the applied field on the transmission
process is discussed.

1. Introduction

The theoretical prediction [1] and experimental discovery [2] ofconducting polymersin the
seventies ushered in the era ofmolecular electronicsin the realm of microelectronics. In
developing molecular devices, a key component is themolecular switch(MS), for which
several mechanisms are available [3]. For example, a hemiquinone molecule exhibitstwo
forms that can be controlled by application of a potential field, perpendicular to the current
direction, thus allowing the molecule to be switched from anacceptorstate to adonor
one [3, 4]. In another case, crystals oftetra-cyanoquinodimethane(TCNQ) derivatives
complexed with metalions, when subjected to a high voltage, were converted into TCNQ
and metalatoms, in the course of which the system switched from ahigh to a low
resistivity [3, 5]. Photoswitcheshave also aroused considerable interest. Taking a ‘leaf’ from
biology, Shipman [6] studied molecules used in photosynthesis, while bacterior-hodopsin
was investigated by Keszthelyiet al [7]. Carter proposed organic chromophones [3, 8],
whose charges and double bonds alter when illuminated.

In essence, regardless of the switching mechanisms involved, they may be modelled
via the change in the electronic configuration of asingle impurity embedded in a
conducting polymer. Within thetight-binding(TB) framework, the one-dimensional system
. . .AAABAAA . . . represents an impurity B embedded in a periodic host chain of A atoms.
Although the A atoms in reality have many orbitals, for the purpose of a qualitative view
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of the impurity effects, a single-orbital approach is adopted. A more detailed analysis
of the system is required to ascertain the optimalchemicaldescription of the impurity.
Modification of the impurity’s electronic configuration is achieved by changing itssite or
bondenergies in the chain.

Sautet and Joachim [9] examined such ametallic chain with equal bonds, while
English and Davison [10] investigated itssemiconductorcounterpart with alternating bonds.
The scattering-matrix technique was employed in both studies to obtain the impurity
transmission coefficient and the change in the density of states. Subsequently, Miškovíc et al
treated a two-impurity system [11], then a one-impurity one [12] via the many-neighbour
approximation [13], using theLippmann–Schwinger(LS) [14] scattering equation in each
case. Concomitantly, Englishet al [15] performed a TB study of the interaction time for
MSs, based on the Martin–Landauer approach [16].

Initial interest in polymer-based devices was in thefield-effect transistor, with the
discovery in the late 1980s that the field effect could be routinely achieved in devices
fabricated by the deposition of conjugated polymers onto insulator layers, such as silicon
dioxide [17–20].

Field effects in solids have a long and venerable history, dating back to Zener’s work
on dielectric breakdown in the thirties [21]. Recently, theStark-ladder (SL) effect in
electrified TB systems has been investigated by Davisonet al [22], who used the recursive-
Green-function (RGF) method, which involves successive use of the Dyson equation. The
RGFs were generated in the site representation, in the form of continued fractions, which
were then expressed analytically as ratios of Bessel functions (BFs). The local density of
states at the surface and in the bulk were obtained and their dependency on the applied
electric field discussed. The RGF approach has also been employed to investigate the SL
effect on surface states [23] and chemisorption [24].

We now turn to the question that we wish to address in this article, namely, ‘How are the
transmission properties of a MS affected by an applied field?’ The system under examination
has asandwich structureconsisting of two metal leads separated by a polymer containing
a single impurity. The metal/polymer/metal (MPM) system is subjected to an electric field
by applying a voltage across the polymer by means of the metal leads. The electronic
structure of the MPM is described in terms of the TB method in which the wavefunction
coefficients are obtained via the LS relation. The coefficients then provide access to the
transmission coefficient of the impurity, which is related to thetransmission probability
by the transfer-matrix approach [9, 10]. The transmission probability can be controlled,
through the manipulation of the impurity site parameters, thereby producing a MS. In some
respects, the formulation adopted here reflects that used by Glick and co-workers [25], in
their tunnelling studies of sandwich structures.

2. Zero-field treatment

Consider aninfinite chain of atoms of site (bond) energyα (β). In projection-operator
notation, its Hamiltonian is

H0 =
∞∑

n=−∞

[
α|n〉〈n| + β(|n〉〈n+ 1| + |n+ 1〉〈n|)] (2.1)

which has the well-known GFG0, with the matrix elements [26]

G0
∞(n,m) ≡ 〈n|G0|m〉 = i

2β

ei|n−m|θ

sinθ
. (2.2)
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Here, θ = ka (k being the electron wavenumber anda the chain period), so the electron
energy dispersion readsE = α + 2β cosθ . On introducing alocalized perturbation, V,
well away from the chain ends(n→ ±∞), equation (2.1) becomes the perturbed Hamil-
tonian

H = H0+ V. (2.3)

The perturbed and unperturbed wavefunctions are connected via the LS equation [14]; that
is,

|ψ〉 = |ψ0〉 +G0V|ψ〉 (2.4)

which is the wavefunction equivalent of theDyson equation[26]. Performing an atomic-
orbital (AO) expansion of wavefunctions in (2.4) and multiplying on the left by〈n|, we
obtain

cn = c0
n +

∑
`,m

G0(n, `)V (`,m)cm (2.5)

as the LS relation for the wavefunction coefficients, withV (`,m) ≡ 〈`|V|m〉.
In the case of anormalizedwave incident from the left, the AO wavefunction coefficients

in (2.5) are given by

cn =
{

einθ + re−inθ n→−∞
τeinθ n→∞ (2.6)

wherer (τ ) is thereflection(transmission) coefficient. For propagation through the crystal,
the plane waves are replaced byBloch wavesby settingθ = ka andx = na.

Restricting the scattering potential to the vicinity of the origin, i.e.,V (`,m) = 0, when
either|`| > N or |m| > N for some finiteN , we apply (2.2) to (2.5) asn→−∞, whereby

cn→ einθ +
∑
`,m

i

2β sinθ
ei(`−n)θV (`,m)cm. (2.7)

Comparing (2.7) with (2.6), we have

r = i

2β sinθ

∑
`,m

ei`θV (`,m)cm. (2.8)

Similarly, takingn→∞, equations (2.5) and (2.6) lead to

τ = 1+ i

2β sinθ

∑
`,m

e−i`θV (`,m)cm. (2.9)

We now model a MS by placing theimpurity atomat the origin (site 0) [9, 10] and
parametrize its site energy asαs and the energies of the bonds to the neighbouring sites−1
and 1 asρ− andρ+, respectively. The corresponding perturbation potential operator is

V = β[2zs |0〉〈0| + (σ − 1)(| − 1〉〈0| + |0〉〈−1|)+ (σy − 1)(|0〉〈1| + |1〉〈0|)] (2.10)

where

σ = ρ−/β y = ρ+/ρ− zs = (αs − α)/2β (2.11)

aredimensionless reduced impurity parameters. Applying (2.10) to (2.9) yields

τ = 1+ Ac−1+ (Aeiθ + B + e−iθC)c0+ Cc1 (2.12)

where

A = i(σ − 1)

2 sinθ
B = izs

sinθ
C = i(σy − 1)

2 sinθ
. (2.13)
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Solution of (2.12) requires equations forc−1, c0 andc1, which are obtained from (2.2),
(2.5) and (2.10) by settingn = −1, 0 and 1. The solutions to these equations are

c−1 =
[
(2e2iθ − 1− e4iθ )C2+ 2eiθ (e2iθ − 1)C − (1− e2iθ )B + 1

]
/1 (2.14)

c0 =
[
(1− e2iθ )A+ eiθ

]
/1 (2.15)

c1 = [(1− e2iθ )C + eiθ ][(1− e2iθ )A+ eiθ ]/1 (2.16)

where

1 = eiθ
[
(e2iθ − 1)(A2+ C2)− 2eiθ (A+ C)+ 1− B

]
. (2.17)

Thus, inserting (2.14) to (2.17) into (2.12) and using (2.13), we arrive at

τ = σ 2y
{
ω2− i[zs +X(ω2− 1)](1−X2)−1/2

}−1
(2.18)

where

ω = σ
[
(1+ y2)/2

]1/2
(2.19)

andX = (E − α)/(2β) is the reducedenergy. Note that, for electron energies inside the
band,−16 X 6 1, we have used the relation exp(iθ) = X+ i

√
1−X2 in deriving (2.18).

The transmission probabilityis given by

T (X) = |τ |2 = 4(y + y−1)−2

{
1+ [zs +X(ω2− 1)]2

ω4(1−X2)

}−1

(2.20)

which is in accord with the transfer-matrix result [9, 10]. Implementing Azbel’senergy-
independenttechnique [27], one may integrate (2.20) over the energy band, but weighted by
the energy derivative of theFermi–Dirac distributionf (E,Ef , kbT ), Ef being the Fermi
energy,T the absolute temperature andkb the Boltzmann constant. We shall consider
the temperature-independent limit, kbT � β, so theeffective-transmission probabilityteff
reduces to

teff = T (Xf ) (2.21)

whereXf is the reduced Fermi energy.

3. Electrified polymer sandwich

We now focus our attention on the MPM-sandwich structure, where thefinite P chain lies
between the sitesn = 0 andN , andsemi-infiniteM leads are connected to the P ends by
bonds of energyδ (figure 1). Anelectric fieldof gradient0, applied to the P chain, gives
rise to apotential difference, φ = N0, between theM-lead sites atn = −1 andN + 1.
The bond energies in both the leads areβ, while the site energies areα andγ (=α + φ)
in the left-hand and right-hand leads, respectively. The presence of the linear field across
the P chain perturbs each site energy [22], so at then-atom,α′n = α′ + n0. Meanwhile,
throughout the chain, the bond energy isβ ′.

As in the chemisorption situation [24], the field strength must be such as to ensure
that ionization of the P chain isavoided. Consequently, we require the restraint that
|N0/2β ′| < 2, which allows at leastonestate to remaindelocalizedacross the field region
of the P chain. In fact, forideal transmission through the chain, a state must remain
delocalized across theentire MPM system. Specifically, the allowed energy bands in the
M leads mustoverlap, whence,|φ| < |4β|.
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Figure 1. A diagram showing an electrified MPM sandwich. The left-hand (right-hand) semi-
infinite metal lead occupies the regionn 6 −1 (n > N + 1) with site and bond energiesα and
β (γ andβ). The polymer lying in the0-field region 06 n 6 N has site (bond) energyα′n
(β ′), whereα′n = α + n0 andφ = N0 is the potential difference between M leads connected
to the P chain byδ-bonds.

The reduced energyin the right-hand lead is defined by [26]

X′ = (E − α − φ)/2β = X − U = cosw (3.1)

where

U = φ/2β (3.2)

is the reduced potential differenceandw = k′a (k′ being the electron wavenumber in the
right-hand lead). Thus, theband overlapis defined byU − 1< X < 1.

In order to use the LS equation, we treat theunperturbedsystem as consisting of
three isolated portions, the left-hand semi-infinite M lead, the finite electrified P chain,
and the right-hand semi-infinite M lead. Aright-moving Bloch wave is introduced at
n = −∞. Since the energy references in the two M leads are different, care must be taken
in normalizing the Bloch waves. The required condition is that thelocal probability current
must beconstantthroughout the MPM system.

Following Caroliet al [28], theprobability-current operatoris defined to be proportional
to theprojected differencebetween adjacent sites; that is,

Jn = J
(
|n+ 1〉〈n| − |n〉〈n+ 1|

)
(3.3)

whose expectation value is

〈ψ |Jn|ψ〉 = J (c∗n+1cn − c∗ncn+1). (3.4)

Hence, anincomingBloch wave,cn = Aeinθ , in the left-hand lead will have aprobability
current

J−∞ = JA2(e−iθ − eiθ ) = −2iJA2 sinθ (3.5)

while, for theoutgoingwave,cn = Beinw, in the right-hand lead, we have

J∞ = JB2(e−iw − eiw) = −2iJB2 sinw. (3.6)

Requiring (3.5) to equal (3.6) leads to theenergy-independent solutionin which

A = (sinθ)−1/2 B = (sinw)−1/2. (3.7)
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Thus, equation (2.6) gives

cn =
{
(sinθ)−1/2einθ + r(sinθ)−1/2e−inθ n→−∞
τ(sinw)−1/2einθ n→∞.

(3.8)

The coefficients, c0
n, for the left-handsemi-infinite lead are obtained from the infinite

system by using thebond-breakingoperator

V = −β
(
| − 1〉〈0| + |0〉〈−1|

)
(3.9)

in the LS equation (2.5), which yields

c0
n = (sinθ)−1/2einθ − β [G0

∞(n,−1)c0
0 +G0

∞(n, 0)c0
−1

]
. (3.10)

The coefficientsc0
0 andc0

−1 are readily eliminated by utilizing (3.10) withn = 0 andn = −1,
so, by dint of (2.2), equation (3.10) yields

c0
n = (sinθ)−1/2(einθ − ei|n|θ ) =

{
2i(sinθ)−1/2 sinnθ n 6 −1

0 n > 0.
(3.11)

The GFs for theM leadsare derived from the infinite chains, by means of thebond-
cleavingpotential operator

V = −β
(
| − 1〉〈0| + |0〉〈−1| + |N〉〈N + 1| + |N + 1〉〈N |

)
(3.12)

which in Dyson’s equation (cf. (2.4)) leads to

G(n,m) = G0
∞(n,m)− β

[
G0
∞(n,−1)G(0, m)+G0

∞(n, 0)G(−1, m)

+ G0
∞(n,N)G(N + 1, m)+G0

∞(n,N + 1)G(N,m)
]

(3.13)

for the semi-infinite M-lead GFs.
In the left-hand lead, wheren,m 6 −1 andX = cosθ , we note thatG(n,m) = 0,

whenevern or m lie outsidethat lead. Thus, (3.13) yields

βG(n−, m−) = −(2i sinθ)−1[ei|n−m|θ − ei|n|θβG(−1, m)] (3.14)

by (2.2). Forn− = −1, equation (3.14) provides

βG(−1, m) = ei|m+1|θeiθ (3.15)

which in (3.14) gives

βG(n−, m−) = (2i sinθ)−1(ei|n|θei|m+1|θeiθ − ei|n−m|θ ). (3.16)

In particular, on settingm = −1, we have

βG(n−,−1) = e−inθ . (3.17)

Likewise, for theright-hand lead,n,m > N + 1 andX′ = cosw, and by analogy with
(3.14), we see that

βG(n+, m+) = −(2i sinw)−1[ei|n−m|w − ei|n−N |wβG(N + 1, m)] (3.18)

where, again,G(n,m) = 0, for n or m outside the lead. Forn = N + 1, equation (3.18)
reduces to

βG(N + 1, m) = ei|m−N−1|weiw. (3.19)

Inserting (3.19) in (3.18), we arrive at

βG(n+, m+) = (2i sinw)−1(ei|n−N |wei|m−N−1|weiw − ei|n−m|w) (3.20)
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i.e., whenm = N + 1,

βG(n+, N + 1) = ei(n−N)w. (3.21)

Having obtained the M leads’ components, we connect them to thefinite P chain, whose
Greenian isG0N , by means of (3.12) with−β replaced byδ, and theunperturbedGFs

G0(n,m) =


G−1−(n,m) n,m 6 −1

G0N(n,m) 06 n,m 6 N
G(N+1)+(n,m) n,m > N + 1

0 otherwise.

(3.22)

In the case of theleft-handlead, wheren 6 −1, the LS equation (2.5) with theδ-version
of (3.12) reads

cn− = c0
n + δG0(n,−1)c0 = 2i(sinθ)−1/2 sinnθ + λe−inθ c0 λ = δ/β (3.23)

via (3.11) and (3.17), withλ = δ/β being thereduced bond energybetween the P chain
and the M leads. In particular, equation (3.23) gives

c−1 = −2i(sinθ)1/2+ λeiθ c0. (3.24)

Inside theP chain, the LS equation (2.5) leads to

c0 = δ
[
G0N(0, 0)c−1+G0N(0, N)cN+1

]
(3.25)

cN = δ
[
G0N(N, 0)c−1+G0N(N,N)cN+1

]
. (3.26)

Similarly, for theright-hand leadm > N + 1, and we find

cm = δG0(m,N + 1)cN = λei(m−N)wcN (3.27)

via (2.5), (3.12) and (3.21), whence

cN+1 = λeiwcN . (3.28)

After some manipulation, equation (3.25) in (3.24) provides the implicit solution

c−1 = −2i(sinθ)1/2+ λ2eiθβG0N(0, N)

1− λ2eiθβG0N(0, 0)
cN+1. (3.29)

Using (3.28) and (3.29), we can write (3.26) as

cN = −2i(sinθ)1/2λβG0N(N, 0)/D (3.30)

where

D = [1− λ2βG0N(0, 0)eiθ
] [

1− λ2βG0N(N,N)e
iw
]− λ4ei(θ+w)β2G2

0N(0, N) (3.31)

with G0N(0, N) = G0N(N, 0). We note here that, inside the band-overlap region, one may
use the relations

exp(iθ) = X + i
√

1−X2

and

exp(iw) = X′ + i
√

1− (X′)2 = X − U + i
√

1− (X − U)2
to expressD in terms of the reduced energyX in the left-hand lead.

On equating (3.8) and (3.27), we find that thetransmission coefficientis

τ = λ(sinw)1/2e−iNwcN (3.32)
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which by (3.30), together with (2.19), (2.20) and (3.1), yields

T = 4λ2
√

1−X2
√

1− (X − U)2 |βG0N(N, 0)|2
|D(X)|2 (3.33)

for the transmission probability.
Thus, the problem is now reduced to one of finding the GF elements,G0N(0, N), in the

finite electrified P-chain region, which are available from previous studies [22, 24], namely,

β ′G0,N (0, N) =
N∏
n=0

β ′G0,N (n, n) (3.34)

where

β ′G0,N (n, n) = − Jν+n+N(x)Yν+n(x)− Jν+n(x)Yν+n+N(x)
Jν+n−1(x)Yν+n+N(x)− Jν+n+N(x)Yν+n−1(x)

(3.35)

with Jµ (Yµ) being a BF of the first (second) kind of orderµ. Here,

x = −ηN/U ν = −N(X − z)/U (3.36)

with η = β ′/β andz = (α′ − α)/β being thereducedbond and site energies, respectively,
of the P chain.

0

0.5

1

−0.5 0 0.5 1 1.5

Ξ-0.5 0 0.5 1 1.5
X

T (X )

1

U = 0:75

U = 1:5

U = 1:25

U = 1

Figure 2. Band-overlap regions versus the electron energyX = (E − α)/(2β) in the left-hand
lead for the potential differencesU = φ/(2β) indicated.

As far as the transmission probability (3.33) is concerned, if the band structure of the
electrified P chain is taken to be thesameas that in the M leads, i.e.,η = 1 andz = 0,
then ramping the potential difference,U , narrows the band-overlapregion (figure 2). For
U = 1, the width of the overlap region is half that of the conduction band in the left-hand
lead (06 X 6 1), soN/2 of the discrete states of the P chain areembeddedin the overlap
region. On varying the interface reduced bond strength,λ = δ/β, figure 3(a) shows that, as
it increases, the separation between the states spreads, while the states themselves broaden
and increase in intensity until full transmission is attained atλ = 1, after which they become
narrower and drop in intensity, while continuing to separate.

In the case where the P-chain and M-lead band structuresdiffer, adjusting the reduced
site energy of the P chain,z, will rigidly shift the embedded P field statesbehindtheoverlap
window. Changing the reduced bond energy of the P chain,η, modifies the bandwidth of the
P field region. Forη = 0.75 andz = −0.25 (figure 3(b)), the states are shifted downward,
leaving little transmission at the higher energies. The separation between P field states is
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Figure 3. The transmission probability of embedded field states versus the electron energy
X = (E − α)/(2β) in the left-hand lead and the interface bond strengthλ = δ/β with the
potential differenceU = φ/(2β) = 1. The reduced site and bond energies of the P chain,
z = (α′ − α)/β andη = β ′/β, are chosen so as to have: (a) identical band structure,z = 0,
η = 1; (b) different band structure,z = −0.25, η = 0.75, compared to the M leads.

narrowed and the states themselves are reduced for lowλ-values, but are sharpened when
λ > 1.

4. Single-impurity switch

At this juncture, we introduce asingle-impurity atominto the electrified P chain, and
investigate the possibility of using it as a means of securing control of the transmission
probability. As before, equation (2.11) defines the parameters describing the impurity,
which is now located at the siteM (1 6 M 6 N − 1). Since (3.33) with (3.31) requires
only the GFs involving the end sites of the P chain, we only need to construct a finite chain
with an embedded impurity in a linear potential, by attaching finite chains to either side of
the site-M impurity. Thus, theunperturbedGF is in three parts, i.e.,

G0(n,m) =


G0

0,M−1(n,m) 06 n,m 6 M − 1

G0
M,M(M,M) n = m = M

G0
M+1,N (n,m) M + 16 n,m 6 N

0 otherwise

(4.1)

which areconnectedvia the potential operator

V = ρ−(|M − 1〉〈M| + |M〉〈M − 1|)+ ρ+(|M〉〈M + 1| + |M + 1〉〈M|). (4.2)

Invoking Dyson’s equation (cf. (2.4)), we have

G0N(0, 0) = G0(0, 0)+ ρ−G0(0,M − 1)G0N(M, 0) (4.3)

in which

G0N(M, 0) = G0N(0,M) = ρ−G0(0,M − 1)G0N(M,M). (4.4)

The on-site GF at the impurity is given by

G0N(M,M) = G0(M,M)[1+ ρ−G0N(M − 1,M)+ ρ+G0N(M + 1,M)] (4.5)

where

G0N(M ± 1,M) = ρ±G0(M ± 1,M ± 1)G0N(M,M). (4.6)
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Inserting (4.6) in (4.5) and rearranging generates the implicit equation

G0N(M,M) =
{
G0(M,M)−1− [ρ2

−G
0(M − 1,M − 1)+ ρ2

+G
0(M + 1,M + 1)]

}−1
.

(4.7)

Returning to (4.3), and using (4.4) and (4.7), we obtain

G0N(0, 0) = G0(0, 0)+ ρ2
−G

0(0,M − 1)2

×
{
G0(M,M)−1− [ρ2

−G
0(M − 1,M − 1)+ ρ2

+G
0(M + 1,M + 1)]

}−1
.

(4.8)

Similarly, we have

G0N(N,N) = G0(N,N)+ ρ+G0(N,M + 1)G0N(M,N) (4.9)

and

G0N(M,N) = G0N(N,M) = ρ+G0(N,M + 1)G0N(M,M) (4.10)

which, by (4.7), yield

G0N(N,N) = G0(N,N)+ ρ2
+G

0(N,M + 1)2

×
{
G0(M,M)−1− [ρ2

−G
0(M − 1,M − 1)+ ρ2

+G
0(M + 1,M + 1)]

}−1
.

(4.11)

With the aid of (4.10) and (4.7), the cross-terms involving the end sites are provided by

G0N(0, N) = G0N(N, 0) = ρ−G0(0,M − 1)G0N(M,N)

= ρ−ρ+G0(0,M − 1)G0(N,M + 1)

G0(M,M)−1− ρ2−G0(M − 1,M − 1)− ρ2+G0(M + 1,M + 1)
. (4.12)

Finally, we use the impurity parameters in (2.10) at the siteM to show that

G0(M,M)−1 = 2β(X − zs −MU/N). (4.13)

Equations (4.8) and (4.11) to (4.13) enable (3.33) to be expressed in terms of theknown
GFs of the electrified P chain with anM-site impurity, whence, the influence of the applied
field enters the transmission probability via the BF expression (3.35).

Employing (2.21), we choose the reduced impurity site energyzs = (αs − α)/(2β) and
the asymmetry of the impurity bonds to the host chainy = ρ+/ρ−, equation (2.11), as the
candidates for describing the parameter space over which we wish to control the impurity
[9, 10]. We adopt the system depicted in figure 3(b) with the interface reduced bond strength
λ = 0.75. Taking the Fermi energy such thatXf = 0.25 and the reduced impurity bond
to the host chainσ = 0.8, equation (2.11), we first sety = 0.5 and consider the effect
of ramping the field via the reduced potential differenceU = φ/(2β) on the zs-curve
(figure 4(a)). AsU increases, the transmission peak increases in height to a resonance at
U = 0.25, before decreasing again. In figure 4(b), we examine the case ofzs = Xf = 0.25,
and treaty as the switching parameter. The peak transmission probability increases both in
height andy-location, asU increases and doubles in value fromU = 0 to 1. Comparison
of the curves in figure 4 clearly shows that figure 4(a) has the desired feature of narrow
maxima, required for good switching performance. Thus,zs is the preferred switching
parameter.
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Figure 4. Transmission properties of a molecular switch at the Fermi energyX = Xf = 0.25
in terms of the impurity site energyzs = (αs − α)/(2β) and the asymmetry of its bonds to
the P chainy = ρ+/ρ−, for the potential differencesU = φ/(2β) shown. The impurity
bond to the host chain isσ = ρ−/β = 0.8, the site and bond energies of the P chain are
z = (α′ − α)/β = −0.25 andη = β ′/β = 0.75, while the interface bond strength isλ = 0.75.
(a) y = 0.5 andzs variable, (b)zs = 0.25 andy variable.

5. Conclusion

The LS scattering equation has been invoked to study the electronic transmission of an
electrified MPM sandwich, where the P chain contains an impurity switch. The applied
voltage bias manifests itself by generating a SL energy spectrum in the doped P chain,
which is analysed via the Dyson-equation approach. The RGF so obtained is expressed
analytically in terms of BFs. Utilizing the RGF in the LS equation enabled expressions for
the wavefunction coefficients to be derived, from which the transmission probability,T (X),
was found in terms of the reduced field,U , and impurity parameters(zs, y). Plots ofT (X)
in the(zs, y) parameter space revealedzs to be the more suitable switching parameter, while
the presence of the field assisted the charge transport to a considerable extent.
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[15] English R A, Mǐskovíc Z L, Davison S G and Goodman F O 1996Phys. Rev.B 54 10
[16] Martin Th and Landauer R 1993Phys. Rev.A 47 2023
[17] Koezuka H, Tsumara A and Ando T 1987Synth. Met.18 699
[18] Assadi A, Svensson C, Willander M and Inganās O 1988Appl. Phys. Lett.53 195
[19] Burroughes J H, Jones C A and Friend R H 1988Nature335 137
[20] Paloheimo J, Stubb H, Yli-Lahti P and Kuivalainen P 1991Synth. Met.41–43563
[21] Zener C 1934Proc. R. Soc.145 523
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